Intelligent Control of Wind Energy Conversion Systems
نویسندگان
چکیده
Wind turbines form complex nonlinear mechanical systems exposed to uncontrolled wind profiles. This makes turbine controller design a challenging task (Athanasius & Zhu, 2009). As such, control of wind energy conversion systems (WECS) is difficult due to the lack of systematic methods to identify requisite robust and sufficiently stable conditions, to guarantee performance. The problem becomes more complex when plant parameters become uncertain. Fuzzy control is one of the techniques which deal with this class of systems. The stability of fuzzy systems formed by a fuzzy plant model and a fuzzy controller has recently been investigated. Various stability conditions have been obtained through the employment of Lyapunov stability theory (Schegner & La Seta, 2004; Tripathy, 1997), fuzzy gainscheduling controllers (Billy, 2011a, 2011b; Iescher et al., 2005), switching controllers (Lescher et al., 2006) and by other methods (Chen & Hu, 2003; Kamal et al., 2008; Muljadi & Edward, 2002). Nonlinear controllers (Boukhezzar & Siguerdidjane, 2009; Chedid et al., 2000; Hee-Sang et al., 2008) have also been proposed for the control of WECS represented by fuzzy models. In addition to stability, robustness is also an important requirement to be considered in the study of uncertain nonlinear WECS control systems. Robustness in fuzzy-model-based control has been extensively studied, such as stability robustness versus modelling errors and other various control techniques for Takagi–Sugeno (TS) fuzzy models (Kamal et al., 2010; Uhlen et al., 1994). In order to overcome nonlinearity and uncertainties, various schemes have been developed in the past two decades (Battista & Mantz, 2004; Boukhezzar & Siguerdidjane, 2010; Prats et al., 2000; Sloth et al., 2009). (Battista & Mantz, 2004) addressing problems of output power regulation in fixed-pitch variable-speed wind energy conversion systems with parameter uncertainties. The design of LMI-based robust controllers to control variable-speed, variable-pitch wind turbines, while taking into account parametric uncertainties in the aerodynamic model has been presented (Sloth et al., 2009). (Boukhezzar & Siguerdidjane, 2010) comparing several linear and nonlinear control strategies, with the aim of improving wind energy conversion systems. (Prats et al., 2000) have also investigated fuzzy logic controls to reduce uncertainties faced by classical control methods. Furthermore, although the problem of control in the maximization of power generation in variable-speed wind energy conversion systems (VS-WECS) has been greatly studied, such
منابع مشابه
Intelligent Control for the Variable-Speed Variable-Pitch Wind Energy System
In this paper, a new type of multi-variable compensation control method for the wind energy conversion systems (WECS) is presented. Based on wind energy conversion systems, combining artificial neural network (ANN) control and PID, a new type of PID NN intelligent controller for steady state torque of the wind generator is designed, by which the steady state torque output is regulated to track ...
متن کاملMaximum Power Point Tracking of Wind Energy Conversion System using Fuzzy- Cuckoo Optimization Algorithm Strategy
Nowadays the position of the renewable energy is so important because of the environment pollution and the limitation of fossil fuels in the world. Energy can be generated more and more by the renewable sources, but the fossil fuels are non-renewable. One of the most important renewable sources is the wind energy. The wind energy is an appropriate alternative source of fossil fuel. The replacem...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملOptimal Control of a Variable-Speed Wind Energy Conversion System: A New Approach
The operation of wind energy conversion systems mainly deals with variable and unpredictable wind regimes resulting in variable power efficiency. In addition, nowadays with the presence of high penetration level of wind farms integrated to power systems, stability and power quality problems might be addressed, when a disturbance event occurs. These challenges are worsened with significant degre...
متن کاملSpace Vector Control Scheme of Three Level ZSI Applied to Wind Energy Systems
In this paper the Space Vector Control Scheme is implemented for a Wind Energy System using Three Level Impedance Source Inverter (ZSI). The wind energy system uses a Self Excited Induction generator (SEIG) which is the most emerging application in the field of Wind Energy Conversion System (WECS). The proposed system is modelled with a generator-side Diode Bridge Rectifier and a Stand-Alone si...
متن کاملA Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System
In recent years, there has been a fast growth in wind energy conversion system (WECS). There are two general types of wind turbines in WECS: fixed speed wind turbines and varying speed wind turbines.Permanent magnet synchronous generator (PMSG) is one of the most attractive generators for the varying speed turbine WECS.In this paper, a fuzzy controller is proposed to control the current source ...
متن کامل